481 research outputs found

    Computational analysis of transport in three-dimensional heterogeneous materials: An OpenFOAMÂź-based simulation framework

    Get PDF
    Porous and heterogeneous materials are found in many applications from composites, membranes, chemical reactors, and other engineered materials to biological matter and natural subsurface structures. In this work we propose an integrated approach to generate, study and upscale transport equations in random and periodic porous structures. The geometry generation is based on random algorithms or ballistic deposition. In particular, a new algorithm is proposed to generate random packings of ellipsoids with random orientation and tunable porosity and connectivity. The porous structure is then meshed using locally refined Cartesian-based or unstructured strategies. Transport equations are thus solved in a finite-volume formulation with quasi-periodic boundary conditions to simplify the upscaling problem by solving simple closure problems consistent with the classical theory of homogenisation for linear advection–diffusion–reaction operators. Existing simulation codes are extended with novel developments and integrated to produce a fully open-source simulation pipeline. A showcase of a few interesting three-dimensional applications of these computational approaches is then presented. Firstly, convergence properties and the transport and dispersion properties of a periodic arrangement of spheres are studied. Then, heat transfer problems are considered in a pipe with layers of deposited particles of different heights, and in heterogeneous anisotropic materials

    SIMULATION OF FLOW AND PARTICLE TRANSPORT AND DEPOSITION IN POROUS MEDIA WITH COMPUTATIONAL FLUID DYNAMICS

    Get PDF
    The simulation of transport and deposition of colloidal particles in porous media finds important applications in many engineering and environmental problems, such as particle filtration, catalytic processes carried out in filter beds, chromatographic separation and aquifer remediation. This study focuses in particular on remediation of contaminated groundwater via direct injection of nano-sized zerovalent iron particles, which have been shown to be able to efficiently degrade a large variety of contaminants. Application of this technology on full scale applications poses a number of challenges, the most important of which regards the mobility of the particles and their delivery to the contaminated site in the soil. Particles migration is usually quantitatively expressed by a single parameter: the deposition efficiency in the porous bed, whose theoretical reference lies in the classical colloid filtration theory, which moreover further subdivides the process of deposition in the three mechanisms by which particles can reach the solid grain: Brownian diffusion, steric interception, and gravitational sedimentation. This theory, however, has been developed only for very simple geometrical representations of the porous media and a narrow range of fluid conditions. The difficulties in investigating this kind of systems from the experimental point of view have prevented the development of accurate models able to account for the high degree of complexity which characterizes a porous medium, both in the grain arrangement and in their shape. The aim of this study is therefore to simulate the transport of the nanoparticles and their interaction with the porous media (at the microscopic scale), in order to improve the current understanding of these phenomena and obtain predictive models for the deposition efficiency of the colloids on the surface of the grains constituting the porous medium; moreover, eventually, to evaluate the effectiveness of the zerovalent iron technology. Several two and three dimensional microscale (the order of millimiters) representations of grain packings with different degrees of complexity were analyzed. First, two dimensional random arrangements of spheres were considered. Then, the analysis was extended to domains reconstructed from SEM images of a real porous medium. The work was then expanded in three dimensions, first considering simplified domains constituted by irregular packings of spheres, and finally geometries constituted by grains of realistic shapes. These last geometries were created using an algorithm simulating the grain sedimentation process in porous media (Settledyn). Flow field and particle transport was then investigated using finite volume CFD codes (Fluent and OpenFoam), solving the Navier-Stokes equations for the flow and using an Eulerian approach for the colloid transport, eventually obtaining, for each case, an estimate of the colloidal transport efficiency. After having validated the methodology used in this work by comparing our results with proved analytical results available for simplified cases, new predictive equations for each of the individual contributions of the three deposition mechanisms were derived, highlighting the differences from the theoretical model due to the wider range of operating conditions investigated and/or the different geometrical characteristics of the porous media

    COVID-19 and Seasonal Influenza Vaccination: Cross-Protection, Co-Administration, Combination Vaccines, and Hesitancy

    Get PDF
    SARS-CoV-2 and influenza are the main respiratory viruses for which effective vaccines are currently available. Strategies in which COVID-19 and influenza vaccines are administered simultaneously or combined into a single preparation are advantageous and may increase vaccination uptake. Here, we comprehensively review the available evidence on COVID-19/influenza vaccine coadministration and combination vaccine candidates from the standpoints of safety, immunogenicity, efficacy, policy and public acceptance. While several observational studies have shown that the trained immunity induced by influenza vaccines can protect against some COVID-19-related endpoints, it is not yet understood whether co-administration or combination vaccines can exert additive effects on relevant outcomes. In randomized controlled trials, co-administration has proved safe, with a reactogenicity profile similar to that of either vaccine administered alone. From the immunogenicity standpoint, the immune response towards four influenza strains and the SARS-CoV-2 spike protein in co-administration groups is generally non-inferior to that seen in groups receiving either vaccine alone. Several public health authorities have advocated co-administration. Different combination vaccine candidates are in (pre)-clinical development. The hesitancy towards vaccine co-administration or combination vaccines is a multifaceted phenomenon and may be higher than the acceptance of either vaccine administered separately. Public health implications are discussed

    Cost-Effectiveness of Vaccination with the 20-Valent Pneumococcal Conjugate Vaccine in the Italian Adult Population

    Get PDF
    The availability of a new 20-valent pneumococcal conjugate vaccine (PCV) makes it appropriate to assess its cost-effectiveness. This was evaluated by adopting the Italian National Health Service perspective, using a cost consequences Markovian model. The expected effects of vaccination with 20-valent PCV were compared with the administration of 13-valent PCV and 15-valent PCV. Assuming a 100% vaccination of cohorts aged 65–74 years, in the (lifetime) comparison between 20-valent PCV and 13-valent PCV, the former is dominant (lower cost for a better health outcome). A reduction in disease events was estimated: −1208 deaths; −1171 cases of bacteraemia; −227 of meningitis; −9845 hospitalised all-cause nonbacteremic pneumonia cases (NBP) and −21,058 non-hospitalised. Overall, in the Italian population, a total gain of 6581.6 life years and of 4734.0 QALY was estimated. On the cost side, against an increase in vaccinations costs (EUR +40.568 million), other direct health costs are reduced by EUR 48.032 million, with a net saving of EUR +7.464 million. The comparison between 20-valent PCV and 15-valent PCV results in an Incremental Cost-Effectiveness Ratio (ICER) of EUR 66 per life year gained and EUR 91 per QALY gained. The sensitivity analyses confirm the robustness of the results. We can conclude that the switch to 20-valent PCV is a sustainable and efficient investment

    Efficacy and safety of darunavir and etravirine in an antiretroviral multi-experienced youth with vertically HIV-1 infection

    Get PDF
    Multiclass-drug resistance, often caused by poor treatment compliance, is a challenging problem in all categories of HIV-infected patients. Selective pressure is higher in youth for both biological and behavioral reasons. We report the case of a 15-year-old Caucasian male, with vertically acquired HIV-1 infection, who failed several lines of antiretroviral therapy and was successfully treated with darunavir/ritonavir and etravirine

    Comparative diagnostic performance of rapid antigen detection tests for COVID-19 in a hospital setting

    Get PDF
    Background: The availability of accurate and rapid diagnostic tools for COVID-19 is essential for tackling the ongoing pandemic. Our study aimed to quantify the performance of available antigen-detecting rapid diagnostic tests (Ag-RDTs) in a real-world hospital setting. Methods: In this retrospective analysis, the diagnostic performance of 7 Ag-RDTs was compared with real-time reverse transcription quantitative polymerase chain reaction assay in terms of sensitivity, specificity and expected predictive values. Results: A total of 321 matched Ag-RDTreal-time reverse transcription quantitative polymerase chain reaction samples were analyzed retrospectively. The overall sensitivity and specificity of the Ag-RDTs was 78.7% and 100%, respectively. However, a wide range of sensitivity estimates by brand (66.0%–93.8%) and cycle threshold (Ct) cut-off values (Ct <25: 96.2%; Ct 30–35: 31.1%) was observed. The optimal Ct cut-off value that maximized sensitivity was 29. Conclusions: The routine use of Ag-RDTs may be convenient in moderate-to-high intensity settings when high volumes of specimens are tested every day. However, the diagnostic performance of the commercially available tests may differ substantially

    Emergency department syndromic surveillance system for early detection of 5 syndromes: a pilot project in a reference teaching hospital in Genoa, Italy

    Get PDF
    Early detection is fundamental for achieving effective control of infectious disease outbreaks. We described the development of a local chief complaint emergency department (ED)-based syn- dromic surveillance system to improve public health response in Genoa, Italy. The five syndromes under investigation by the syn- dromic surveillance system were influenza-like illness (ILI), low- respiratory tract illness (LRTI), not-haemorrhagic gastroenteritis, acute hepatitis, fever-with-rash (maculo-papular or vescicular) syndrome. Syndrome coding, data capture, transmission and processing, statistical analysis to assess indicators of disease activity and alert thresholds, and signal response were operatively described. Preliminary results on ILI syndromic surveillance showed that new system allowed the activation of the alert state with a specificity of 90.3% and a sensitivity of 72.9% in predicting epidemiological relevant events, such as ? 10 accesses to ED for ILI in 3 days. The new syndromic surveillance system allowed to alert the public health institutions 2.5 days before than the local surveillance system based on sentinel physicians and paediatri- cians, permitting the early activation of the necessary measures for the containment and for burden reduction of the epidemic event. It is noteworthy that the syndromic surveillance epidemic cut-off was overcome once before and 4 times after influenza outbreak detected by sentinel-based surveillance system: all episodes were contemporary with Respiratory Syncytial Virus and Parainfluenza Virus circulation, as detected by regional reference laboratory

    Vaccinating Italian infants with a new multicomponent vaccine (BexseroÂź) against meningococcal B disease: A cost-effectiveness analysis

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The European Medicines Agency has approved a multicomponent serogroup B meningococcal vaccine (Bexsero¼) for use in individuals of 2 months of age and older. A cost-effectiveness analysis (CEA) from the societal and Italian National Health Service perspectives was performed in order to evaluate the impact of vaccinating Italian infants less than 1 y of age with Bexsero¼, as opposed to non-vaccination. The analysis was carried out by means of Excel Version 2011 and the TreeAge Pro¼ software Version 2012. Two basal scenarios that differed in terms of disease incidence (official and estimated data to correct for underreporting) were considered. In the basal scenarios, we considered a primary vaccination cycle with 4 doses (at 2, 4, 6 and 12 months of age) and 1 booster dose at the age of 11 y, the societal perspective and no cost for death. Sensitivity analyses were carried out in which crucial variables were changed over probable ranges. In Italy, on the basis of official data on disease incidence, vaccination with Bexsero¼ could prevent 82.97 cases and 5.61 deaths in each birth cohort, while these figures proved to be three times higher on considering the estimated incidence. The results of the CEA showed that the Incremental Cost Effectiveness Ratio (ICER) per QALY was €109,762 in the basal scenario if official data on disease incidence are considered and €26,599 if estimated data are considered. The tornado diagram indicated that the most influential factor on ICER was the incidence of disease. The probability of sequelae, the cost of the vaccine and vaccine effectiveness also had an impact. Our results suggest that vaccinating infants in Italy with Bexsero¼ has the ability to significantly reduce meningococcal disease and, if the probable underestimation of disease incidence is considered, routine vaccination is advisable.The study was financed by the Italian Ministry of University and Research (MIUR, project PRIN 2009; Grant number: 2009ZPM4×4)

    Development and preliminary data on the use of a mobile app specifically designed to increase community awareness of invasive pneumococcal disease and its prevention

    Get PDF
    PublishedGiven the growing use and great potential of mobile apps, this project aimed to develop and implement a user-friendly app to increase laypeople's knowledge and awareness of invasive pneumococcal disease (IPD). Despite the heavy burden of IPD, the documented low awareness of IPD among both laypeople and healthcare professionals and far from optimal pneumococcal vaccination coverage, no app specifically targeting IPD has been developed so far. The app was designed to be maximally functional and conceived in accordance with user-centered design. Its content, layout and usability were discussed and formally tested during several workshops that involved the principal stakeholders, including experts in IPD and information technology and potential end-users. Following several workshops, it was decided that, in order to make the app more interactive, its core should be a personal “checker” of the risk of contracting IPD and a user-friendly risk-communication strategy. The checker was populated with risk factors identified through both Italian and international official guidelines. Formal evaluation of the app revealed its good readability and usability properties. A sister web site with the same content was created to achieve higher population exposure. Seven months after being launched in a price- and registration-free modality, the app, named “Pneumo Rischio,” averaged 20.9 new users/day and 1.3 sessions/user. The first in-field results suggest that “Pneumo Rischio” is a promising tool for increasing the population's awareness of IPD and its prevention through a user-friendly risk checker.The development of the app is a part of the project on increasing the population's awareness of invasive pneumococcal disease and has been supported by sponsorship from Pfizer S.r.l. The sponsor had no role in the app design and development. The authors thank Progetti di Impresa Srl for creating the app and website

    Effect of the 2020/21 season influenza vaccine on SARS-CoV-2 infection in a cohort of Italian healthcare workers

    Get PDF
    Objectives: Healthcare workers (HCWs) are a priority group for seasonal influenza vaccination (SIV). The 2020/21 SIV campaign was conducted during the second wave of the COVID-19 pandemic. Vaccines, including SIV, may exert non-specific protective effects on other infectious diseases which may be ascribable to the concept of trained immunity. The aim of this study was to explore the association between 2020/21 SIV and SARS-CoV-2 positivity in a cohort of Italian HCWs. Methods: In this observational study, a cohort of HCWs employed by a large (ca 5000 employees) referral tertiary acute-care university hospital was followed up retrospectively until the start of the COVID-19 vaccination campaign. The independent variable of interest was the 2020/21 SIV uptake. Both egg-based and cell culture-derived quadrivalent SIVs were available. The study outcome was the incidence of new SARS-CoV-2 infections, as determined by RT-PCR. Multivariable Cox regression was applied in order to discern the association of interest. Results: The final cohort consisted of 2561 HCWs who underwent ≄1 RT-PCR test and accounted for a total of 94,445 person-days of observation. SIV uptake was 35.6%. During the study period, a total of 290 new SARS-CoV-2 infections occurred. The incidence of new SARS-CoV-2 was 1.62 (95% CI: 1.22–2.10) and 3.91 (95% CI: 3.43–4.45) per 1000 person-days in vaccinated and non-vaccinated HCWs, respectively, with an adjusted non-proportional hazard ratio of 0.37 (95% CI: 0.22–0.62). E-values suggested that unmeasured confounding was unlikely to explain the association. Conclusions: A lower risk of SARS-CoV-2 infection was observed among SIV recipients
    • 

    corecore